.本题满分13分甲乙二人用4张扑克牌分别是红桃2,红桃3,红桃4,方片4玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.(I)设表示甲乙抽到的牌的数字,如甲抽到红桃2,乙抽到红桃3,记为2,3写出甲乙二人抽到的牌的所有情况;(Ⅱ)若甲抽到红桃3,则乙抽出的牌面数字比3大的概率是多少?(Ⅲ)甲乙约定,若甲抽到的牌的牌面数字比乙大,则甲胜;否则,乙胜,你认为此游戏是否公平?请说明理由.
(本小题满分13分)如图1,在中,,,,、分别为、的中点,连接并延长交于,将沿折起,使平面平面,如图2所示. (1)求证:平面; (2)求平面与平面所成的锐二面角的余弦值; (3)在线段上是否存在点使得平面?若存在,请指出点的位置;若不存在,说明理由.
(本小题满分13分)根据新修订的《环境空气质量标准》指出空气质量指数在,各类人群可正常活动.某市环保局在2014年对该市进行为期一年的空气质量检测,得到每天的空气质量指数,从中随机抽取50个作为样本进行分析报告,样本数据分组区间为,,,,,由此得到样本的空气质量指数频率分布直方图,如图. (1)求的值; (2)根据样本数据,试估计这一年度的空气质量指数的平均值; (3)用这50个样本数据来估计全年的总体数据,将频率视为概率.如果空气质量指数不超过20,就认定空气质量为“最优等级”.从这一年的监测数据中随机抽取2天的数值,其中达到“最优等级”的天数为,求的分布列和数学期望.
(本小题满分13分)已知函数. (1)求函数的最小正周期和函数的单调递增区间; (2)在中,角,,所对的边分别为,,,若,,的面积为,求边长的值.
(本题满分14分)已知椭圆的离心率为,点P(1,)在该椭圆上. (1)求椭圆的标准方程; (2)若直线与圆O:相切,并椭圆交于不同的两点A、B,求 △AOB面积S的最大值.
(本题满分13分)已知函数,(a、b为常数). (1)求函数在点(1,)处的切线方程; (2)当函数g(x)在x=2处取得极值-2.求函数的解析式; (3)当时,设,若函数在定义域上存在单调减区间,求实数b的取值范围;