某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.
(1)甲、乙两种书柜每个的价格分别是多少元?
(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.
某单位750名职工积极参加向贫困地区学校捐书活动,为了解职工的捐书量,采用随机抽样的方法抽取30名职工作为样本,对他们的捐书量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用 A 、 B 、 C 、 D 、 E 表示,根据统计数据绘制成了如图所示的不完整的条形统计图,由图中给出的信息解答下列问题:
(1)补全条形统计图;
(2)求这30名职工捐书本数的平均数、众数和中位数;
(3)估计该单位750名职工共捐书多少本?
如图,点 A 、 F 、 C 、 D 在同一条直线上,已知 AF = DC , ∠ A = ∠ D , BC / / EF ,求证: AB = DE .
如图,抛物线 y = a x 2 + bx 经过 ΔOAB 的三个顶点,其中点 A ( 1 , 3 ) ,点 B ( 3 , − 3 ) , O 为坐标原点.
(1)求这条抛物线所对应的函数表达式;
(2)若 P ( 4 , m ) , Q ( t , n ) 为该抛物线上的两点,且 n < m ,求 t 的取值范围;
(3)若 C 为线段 AB 上的一个动点,当点 A ,点 B 到直线 OC 的距离之和最大时,求 ∠ BOC 的大小及点 C 的坐标.
(1)操作发现:如图①,小明画了一个等腰三角形 ABC ,其中 AB = AC ,在 ΔABC 的外侧分别以 AB , AC 为腰作了两个等腰直角三角形 ABD , ACE ,分别取 BD , CE , BC 的中点 M , N , G ,连接 GM , GN .小明发现了:线段 GM 与 GN 的数量关系是 ;位置关系是 .
(2)类比思考:
如图②,小明在此基础上进行了深入思考.把等腰三角形 ABC 换为一般的锐角三角形,其中 AB > AC ,其它条件不变,小明发现的上述结论还成立吗?请说明理由.
(3)深入研究:
如图③,小明在(2)的基础上,又作了进一步的探究.向 ΔABC 的内侧分别作等腰直角三角形 ABD , ACE ,其它条件不变,试判断 ΔGMN 的形状,并给与证明.