如图是小青所在学校的平面示意图,请你建立适当的坐标系描述食堂的位置.
设各项均为正数的数列的前项和为,满足且恰好是等比数列的前三项.(Ⅰ)求数列、的通项公式; (Ⅱ)记数列的前项和为,若对任意的,恒成立,求实数的取值范围.
等边三角形的边长为3,点、分别是边、上的点,且满足(如图1).将△沿折起到△的位置,使二面角为直二面角,连结、 (如图2).(Ⅰ)求证:平面;(Ⅱ)在线段上是否存在点,使直线与平面所成的角为?若存在,求出的长,若不存在,请说明理由.
已知向量,,函数(Ⅰ)求的最大值;(Ⅱ)在中,设角,的对边分别为,若,且,求角的大小.
设函数.(Ⅰ)若在x=处的切线与直线4x+y=0平行,求a的值;(Ⅱ)讨论函数的单调区间;(Ⅲ)若函数的图象与x轴交于A,B两点,线段AB中点的横坐标为,证明.
已知圆心为C的圆,满足下列条件:圆心C位于x轴正半轴上,与直线3x-4y+7=0相切,且被轴截得的弦长为,圆C的面积小于13.(Ⅰ)求圆C的标准方程;(Ⅱ)设过点M(0,3)的直线l与圆C交于不同的两点A,B,以OA,OB为邻边作平行四边形OADB.是否存在这样的直线l,使得直线OD与MC恰好平行?如果存在,求出l的方程;如果不存在,请说明理由.