已知函数.(I)若函数在上是减函数,求实数的取值范围;(II)令,是否存在实数,使得当时,函数的最小值是,若存在,求出实数的值,若不存在,说明理由?(III)当时,证明:.
某示范性高中的校长推荐甲、乙、丙三名学生参加某大学自主招生考核测试,在本次考核中只有合格和优秀两个等级.若考核为合格,授予10分降分资格;考核为优秀,授予20分降分资格.假设甲、乙、丙考核为优秀的概率分别为、、,他们考核所得的等级相互独立. (1)求在这次考核中,甲、乙、丙三名学生至少有一名考核为优秀的概率; (2)记在这次考核中甲、乙、丙三名学生所得降分之和为随机变量ξ,求随机变量ξ的分布列和数学期望.
在△ABC中,角所对的边分别是,且满足:又. (Ⅰ)求角A的大小; (Ⅱ)若a=2,求△ABC的面积S.
(本小题满分7分)选修4—5:不等式选讲 已知定义在R上的函数的最小值为. (Ⅰ)求的值; (Ⅱ)若为正实数,且,求证:.
(本小题满分7分)《选修4-4:坐标系与参数方程》 已知曲线的参数方程: (为参数), 曲线上的点对应的参数,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系. (Ⅰ)求曲线的极坐标方程; (Ⅱ)已知直线过点,且与曲线于两点,求的范围.
(本小题满分7分)选修4—2:矩阵与变换 已知2×2矩阵M=有特征值λ=-1及对应的一个特征向量e1=. (Ⅰ)求矩阵M. (Ⅱ)设曲线C在矩阵M的作用下得到的方程为x2+2y2=1,求曲线C的方程.