(本大题满分13分) 已知双曲线与椭圆有共同的焦点,点在双曲线C上. (1)求双曲线C的方程; (2)以P(1,2)为中点作双曲线C的一条弦AB,求弦AB所在直线的方程.
数列{}的前n项和记为,a1=t,=2+1(n∈N+).(Ⅰ)当t为何值时,数列{}是等比数列;(Ⅱ)在(Ⅰ)的条件下,若等差数列{}的前n项和有最大值,且=15,又 a1+b1,a2+b2,a3+b3成等比数列,求.
已知△ABC的三个内角A、B、C所对的边分别为a,b, c,向量m=(1,1-sinA),n=(cosA,1),且m⊥n.(Ⅰ)求角A;(Ⅱ)若b+c=a,求sin(B+)的值.
已知集合U={x|>-2且x∈Z},集合A={x|ax-1=0},集合B={x|-(a+3)x+2a+2=0),若CUA=B,求a的值.
已知中心在原点,焦点在轴上的椭圆,离心率,且经过抛物线的焦点.(1)求椭圆的标准方程;(2)若过点的直线(斜率不等于零)与椭圆交于不同的两点(在之间),与面积之比为,求的取值范围.
已知函数的图象为曲线C。(1)若曲线C上存在点P,使曲线C在P点处的切线与轴平行,求的关系;(2)若函数时取得极值,求此时的值;(3)在满足(2)的条件下,的取值范围。