已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个圆.(1)求实数m的取值范围;(2)求该圆半径r的取值范围;(3)求圆心的轨迹方程。
已知函数f(x)=在点(-1,f(-1))处的切线方程为x+y+3=0. (1)求函数f(x)的解析式. (2)设g(x)=lnx.求证:g(x)≥f(x)在[1,+∞)上恒成立.
某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数. (1)sin213°+cos217°-sin 13°cos 17°. (2)sin215°+cos215°-sin 15°cos 15°. (3)sin218°+cos212°-sin 18°cos 12°. (4)sin2(-18°)+cos248°-sin(-18°)cos 48°. (5)sin2(-25°)+cos255°-sin(-25°)cos 55°. ①试从上述五个式子中选择一个,求出这个常数. ②根据①的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.
已知实数a,b,c,d满足a+b=c+d=1,ac+bd>1,求证:a,b,c,d中至少有一个是负数.
某少数民族的刺绣有着悠久的历史,如图(1)(2)(3)(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形. (1)求出f(5). (2)利用合情推理的“归纳推理思想”归纳出f(n+1)与f(n)的关系式,并根据你得到的关系式求f(n)的关系式.
如图所示,底面为平行四边形ABCD的四棱锥P-ABCD中,E为PC的中点.求证:PA∥平面BDE.(要求注明每一步推理的大前提、小前提和结论,并最终把推理过程用简略的形式表示出来)