已知幂函数 满足(1)求的解析式;(2)若函数在区间上是减函数,求非负实数的取值范围。
(本小题满分10分)选修4—1:几何证明选讲切线与圆切于点,圆内有一点满足,的平分线交圆于,,延长交圆于,延长交圆于,连接.(Ⅰ)证明://; (Ⅱ)求证:.
(本小题满分12分) 已知函数. (1)若曲线在处的切线为,求的值;(2)设,,证明:当时,的图象始终在的图象的下方;(3)当时,设,(为自然对数的底数),表示导函数,求证:对于曲线上的不同两点,,,存在唯一的,使直线的斜率等于.
(本小题满分12分)已知垂直平分线与交于Q点.(1)求Q点的轨迹方程;(2)已知点 A(-2,0), 过点且斜率为()的直线与Q点的轨迹相交于两点,直线,分别交直线于点,,线段的中点为,记直线的斜率为.求证:为定值.
(本小题满分12分)某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩共分五组,得到频率分布表如下表所示。(1)请求出①②位置相应的数字,填在答题卡相应位置上,并补全频率分布直方图;(2)为了能选出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样的方法抽取12人进入第二轮面试,求第3、4、5组中每组各抽取多少人进入第二轮的面试;假定考生“XXX”笔试成绩为178分,但不幸没入选这100人中,那这样的筛选方法对该生而言公平吗?为什么?(3)在(2)的前提下,学校决定在12人中随机抽取3人接受“王教授”的面试,设第4组中被抽取参加“王教授”面试的人数为,求的分布列和数学期望.
(本小题满分12分)底面为一个矩形,其中,。顶部线段平面,棱, , 二面角的余弦值为,设是的中点, (1)证明:平面;(2)求平面BEF和平面CEF所成锐二面角的余弦值.