(11·肇庆)(本小题满分7分)肇庆市某施工队负责修建1800米的绿道.为了尽量减少施工对周边环境的影响,实际工作效率比原计划提高了20%,结果提前两天完成.求原计划平均每天修绿道的长度.
某同学在学习了统计知识后,就下表所列的5种用牙不良习惯对全班每一个同学进行了问卷调查(每个被调查的同学必须选择而且只能在5种用牙不良习惯中选择一项),调查结果如下统计图所示.根据以上统计图提供的信息,回答下列问题:
(1)这个班有多少名学生?(2)这个班中有C类用牙不良习惯的学生多少人?占全班人数的百分比是多少?(3)请补全条形统计图;(4)根据调查结果,估计这个年级850名学生中有B类用牙不良习惯的学生多少人?
如图,在△ABC中,A(-2,3)、B(-3,1)、C(-1,2). (1)将△ABC向右平移4个单位长度,画出平移后的△A1B1C1. (2)画出△ABC关于x轴对称的△A2B2C2. (3)将△ABC绕着原点O旋转180°,画出旋转后的△A3B3C3. (4)△A1B1C1与△A3B3C3关于点 成 对称(填“轴对称”或“中心对称”).
如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM=AC,过点M作ME∥BC交AB于点E.求证:△ABC≌△MED.
如图,矩形ABCD中,AB=8,AD=10.(1)求矩形ABCD的周长;(2)E是CD上的点,将△ADE沿折痕AE折叠,使点D落在BC边上点F处.①求DE的长;② 点P是线段CB延长线上的点,连接PA,若△PAF是等腰三角形,求PB的长.(3)M是AD上的动点,在DC 上存在点N,使△MDN沿折痕MN折叠,点D落在BC边上点T处,求线段CT长度的最大值与最小值之和.
已知,在△ABC中,∠BAC=90°,AB=AC,CE平分∠ACB交AB于点E。 (1)∠B= 度. (2)如图9,若点D在斜边BC上,DM垂直平分BE,垂足为M。求证:BD=AE; (3)如图10,过点B作BF⊥CE,交CE的延长线与点F。若CE=6,求△BEC的面积。