(本小题满分12分)已知函数.(Ⅰ)若函数在上是增函数,求正实数的取值范围;(Ⅱ)若,且,设,求函数在上的最大值和最小值.
(本小题满分10分)袋中有4个红球,3个黑球,从袋中随机取球,设取到一个红球得2分,取到一个黑球的1分,现在从袋中随机摸出4个球,求:(1)列出所得分数X的分布列; (2)得分大于6分的概率.
(本小题满分9分)
已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为(1)求A,ω,φ的值.(2)写出函数f(x)图象的对称中心及单调递增区间.(3)当x∈时,求f(x)的值域.
设两个非零向量e1、e2不共线.如果=e1+e2,2e1+8e2,=3(e1-e2) ⑴求证: A、B、D三点共线. ⑵试确定实数k,使ke1+e2和e1+ke2共线.
(1)已知tanθ=2,求的值. (2)求的值.