(本小题满分12分)在数列中,,其中.(Ⅰ)求证:数列为等差数列;(Ⅱ)求证:
(本小题满分10分)选修:4-4:坐标系与参数方程 已知直线(t为参数)经过椭圆(为参数)的左焦点F. (Ⅰ)求m的值; (Ⅱ)设直线l与椭圆C交于A、B两点,求|FA|·|FB|的最大值和最小值.
(本小题满分10分)选修4-1:几何证明选讲 如图所示,AC为的直径,D为的中点,E为BC的中点. (Ⅰ)求证:AB∥DE; (Ⅱ)求证:2AD·CD=AC·BC.
已知函数, (Ⅰ)时,证明:; (Ⅱ)若函数没有零点,求实数的取值范围;
椭圆()的左焦点为,右焦点为,离心率.设动直线与椭圆相切于点且交直线于点,的周长为. (1)求椭圆的方程; (2)求证:以为直径的圆恒过点
甲、乙、丙、丁四位好友约好出去游玩,为了增加乐趣,游玩的费用四人约好:每人掷一枚质地均匀的骰子决定出资的数值,掷出的点数为1或2的人出资200元,掷出的点数大于2的人出资100元; (1)求这4个人中恰好有两人出资200元的概率; (2)用分别表示四个人出资200元、100元的人数,记,求的概率分布列和数学期望;