(本小题满分12分)已知各项均为正数的数列中,是数列的前项和,对任意,有 .函数,数列的首项. (Ⅰ)求数列的通项公式;(Ⅱ)令求证:是等比数列并求通项公式; (Ⅲ)令,,求数列的前n项和.
(本题满分14分)在锐角三角形ABC中,已知角A、B、C所对的边分别为a、b、c,且, (1)若c2=a2+b2—ab,求角A、B、C的大小; (2)已知向量的取值范围。
(本题满分14分)已知函数. (1)求函数的单调递增区间; (2)若,,求的值.
(本小题满分12分)已知数列的各项均为正数,前项和为,且 (1)求证数列是等差数列; (2)设…,求。
(本小题满分10分)在中,角所对的边分别为、、,且.(Ⅰ)求的值;(Ⅱ)若,求的最大值.
(本小题满分12分)设函数 (1)当时,求函数的最大值; (2)令,()其图象上任意一点处切线的斜率≤恒成立,求实数的取值范围; (3)当,,方程有唯一实数解,求正数的值.