在结束了380课时初中阶段数学内容的教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制如下统计图表(图1~图3),请根据图表提供的信息,回答下列问题:(1)图1中“统计与概率”所在扇形的圆心角为 度;(2)图2、3中的a= ,b= ;(3)在60课时的总复习中,唐老师应安排多少课时复习“数与代数”内容?
数学课上,张老师举了下面的例题:
例1 等腰三角形 ABC 中, ∠ A = 110 ° ,求 ∠ B 的度数.(答案: 35 ° )
例2 等腰三角形 ABC 中, ∠ A = 40 ° ,求 ∠ B 的度数,(答案: 40 ° 或 70 ° 或 100 ° )
张老师启发同学们进行变式,小敏编了如下一题:
变式 等腰三角形 ABC 中, ∠ A = 80 ° ,求 ∠ B 的度数.
(1)请你解答以上的变式题.
(2)解(1)后,小敏发现, ∠ A 的度数不同,得到 ∠ B 的度数的个数也可能不同,如果在等腰三角形 ABC 中,设 ∠ A = x ° ,当 ∠ B 有三个不同的度数时,请你探索 x 的取值范围.
如图1,窗框和窗扇用“滑块铰链”连接,图3是图2中“滑块铰链”的平面示意图,滑轨 MN 安装在窗框上,托悬臂 DE 安装在窗扇上,交点 A 处装有滑块,滑块可以左右滑动,支点 B , C , D 始终在一直线上,延长 DE 交 MN 于点 F .已知 AC = DE = 20 cm , AE = CD = 10 cm , BD = 40 cm .
(1)窗扇完全打开,张角 ∠ CAB = 85 ° ,求此时窗扇与窗框的夹角 ∠ DFB 的度数;
(2)窗扇部分打开,张角 ∠ CAB = 60 ° ,求此时点 A , B 之间的距离(精确到 0 . 1 cm ) .
(参考数据: 3 ≈ 1 . 732 , 6 ≈ 2 . 449 )
学校拓展小组研制了绘图智能机器人(如图 1 ) ,顺次输入点 P 1 , P 2 , P 3 的坐标,机器人能根据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式.
(1) P 1 ( 4 , 0 ) , P 2 ( 0 , 0 ) , P 3 ( 6 , 6 ) ;
(2) P 1 ( 0 , 0 ) , P 2 ( 4 , 0 ) , P 3 ( 6 , 6 ) .
一辆汽车行驶时的耗油量为0.1升 / 千米,如图是油箱剩余油量 y (升 ) 关于加满油后已行驶的路程 x (千米)的函数图象.
(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;
(2)求 y 关于 x 的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.
为了解某地区机动车拥有量对道路通行的影响,学校九年级社会实践小组对2010年 ~ 2017 年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成下列统计图:
根据统计图,回答下列问题:
(1)写出2016年机动车的拥有量,分别计算2010年 ~ 2017 年在人民路路口和学校门口堵车次数的平均数.
(2)根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法.