有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字-l,-2和-3.小强从A布袋中随机取出一个小球,记录其标有的数字为a,再从B布袋中随机取出一个小球,记录其标有的数字为b,这样就确定点Q的一个坐标为(a,b).⑴用列表或画树状图的方法写出点Q的所有可能坐标;⑵求点Q落在直线y=x-3上的概率.
东方商场购进一批单价为20元的日用品,销售一段时间后,经调查发现,若按每件24元的价格销售时,每月能卖36件;若按每件29元的价格销售时,每月能卖21件,假定每月销售件数y(件)与价格x(元/件)之间满足关系一次函数. (1)试求y与x的函数关系式; (2)为了使每月获得利润为144元,问商品应定为每件多少元? (3)为了获得了最大的利润,商品应定为每件多少元?
如图,AB是⊙O的直径,点C在⊙O上,D是AB延长线上的一点,AE⊥DC交DC的延长线于E,AC平分∠DAE. (1)直线DE与⊙O有怎样的位置关系?为什么? (2)若AC=,⊙O的半径为1,求CD的长及由弧BC、线段BD、CD所围成的阴影部分的面积.
某数学兴趣小组的同学在一次数学活动中,为了测量某建筑物AB的高,他们来到与建筑物AB在同一平地且相距12米的建筑物CD上的C处观察,测得某建筑物顶部A的仰角为30°、底部B的俯角为45°.求建筑物AB的高(精确到1米).(可供选用的数据:≈1.4,≈1.7).
某校初三学生开展踢毽子活动,每班派5名学生参加,按团体总分排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是甲班和乙班成绩最好的5名学生的比赛成绩.
经统计发现两班5名学生踢毽子的总个数相等.此时有学生建议,可以通过考查数据中的其它信息作为参考. 请你回答下列问题: (1)甲乙两班的优秀率分别为、; (2)计算两班比赛数据的方差; (3)根据以上三条信息,你认为应该把团体第一名的奖状给哪一个班?简述理由.
如图所示,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D. (1)求作此残片所在的圆(不写作法,保留作图痕迹); (2)已知:AB=16,CD=4.求(1)中所作圆的半径.