已知抛物线.(1)试说明:无论m为何实数,该抛物线与x轴总有两个不同的交点;(2)如图,当该抛物线的对称轴为直线x=3时,抛物线的顶点为点C,直线y=x-1与抛物线交于A、B两点,并与它的对称轴交于点D.①抛物线上是否存在一点P使得四边形ACPD是正方形?若存在,求出点P的坐标;若不存在,说明理由;②平移直线CD,交直线AB于点M,交抛物线于点N,通过怎样的平移能使得C、D、M、N为顶点的四边形是平行四边形.
将某雷达测速区监测到的一组汽车的时速数据整理,得到其频数分布表(未完成):
注:30~40为时速大于等于30千米而小于40千米,其他类同. (1)请你把表中的数据填写完整; (2)补全频数分布直方图; (3)如果此路段汽车时速超过60千米即为违章,则违章车辆共有多少辆?
如图,已知:DF∥AC,∠C=∠D.求证:BD∥CE.
如图,EF⊥CD于F,GH⊥CD于H,已知∠1=70°,求∠3的度数.
如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2). (1)写出点A、B的坐标: (2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(,)、B′(,)、C′(,). (3)△ABC的面积为 .
解不等式组:,并把它的解集在数轴上表示出来.