(本小题满分12分)已知直线l:2mx-y-8m-3=0和圆C:(x-3)2+(y+6)2=25.(1)证明:不论m取什么实数,直线l与圆C总相交;(2)求直线l被圆C截得的线段的最短长度以及此时直线l的方程.
为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:
(Ⅰ)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格); (Ⅱ)设甲、乙两校高三年级学生这次联考数学平均成绩分别为 x 1 , x 2 ,估计 x 1 - x 2 的值.
设函数 f x = sin x + sin x + π 3 . (Ⅰ)求 f x 的最小值,并求使 f x 取得最小值的的集合; (Ⅱ)不画图,说明函数 y = f x 的图像可由 y = sin x 的图象经过怎样的变化得到.
给定数列 a 1 , a 2 , . . , a n .对 i = 1 , 2 , . . . , n - 1 ,该数列前 i 项的最大值记为 A i ,后 n - i 项 a i + 1 , a i + 2 , . . . , a n 的最小值记为 B i , d i = A i - B i . (1)设数列 { a n } 为 3 , 4 , 7 , 1 ,写出 d 1 , d 2 , d 3 的值; (2)设 a 1 , a 2 , . . , a n ( n ≥ 4 ) 是公比大于1的等比数列,且 a 1 > 0 .证明: d 1 , d 2 , . . . , d n - 1 是等比数列. (3)设 d 1 , d 2 , . . . , d n - 1 是公差大于0的等差数列,且 d 1 > 0 ,证明: a 1 , a 2 , . . . , a n - 1 是等差数列.
直线 y = k x + m m ≠ 0 与椭圆 W : x 2 4 + y 2 = 1 相交于 A , C 两点, O 为坐标原点. (Ⅰ)当点 B 的坐标为 0 , 1 ,且四边形 O A B C 为菱形时,求 A C 的长; (Ⅱ)当点 B 在 W 上且不是 W 的顶点时,证明:四边形 O A B C 不可能为菱形.
已知函数 f ( x ) = x 2 + x sin x + cos x . (Ⅰ)若曲线 y = f ( x ) 在点 ( a , f ( a ) ) 处与直线 y = b 相切,求 a 与 b 的值. (Ⅱ)若曲线 y = f ( x ) 与直线 y = b 有两个不同的交点,求 b 的取值范围.