(11·漳州)(满分8分)下图是2002年在北京举办的世界数学家大会的会标“弦图”,它既标志着中国古代的数学成就,又像一只转动着的风车,欢迎世界各地的数学家们.请将“弦图”中的四个直角三角形通过你所学过的图形变换,在以下方格纸中设计另个两个不同的图案.画图要求:(1)每个直角三角形的顶点均在方格纸的格点上,且四个三角形到不重叠;(2)所设计的图案(不含方格纸)必须是中心对称图形或轴对称图形.
有四张形状、大小和质地相同的卡片A、B、C、D,正面分别写有一个正多边形(所有正多边形的边长相等),把四张卡片洗匀后正面朝下放在桌面上,从中随机抽取一张(不放回),接着再随机抽取一张.请你用画树形图或列表的方法列举出可能出现的所有结果;如果在(1)中各种结果被选中的可能性相同,求两次抽取的正多边形能构成平面镶嵌的概率;若两种正多边形构成平面镶嵌,p、q表示这两种正多边形的个数,x、y表示对应正多边形的每个内角的度数,则有方程px+qy=360,求每种平面镶嵌中p、q的值.
如图,在平面直角坐标系中,有一Rt△ABC,且A(-1,3),B(-3,-1),C(-3,3),已知△A1AC1是由△ABC旋转得到的. 请写出旋转中心的坐标是 ,旋转角是 度;以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°、180°的三角形;设Rt△ABC两直角边BC=a、AC=b、斜边AB=c,利用变换前后所形成的图案证明勾股定理.
如图,AB是⊙O的直径,AC是弦,OD⊥AC于点D,过点A作⊙O的切线AP,AP与OD的延长线交于点P,连接PC、BC.猜想:线段OD与BC有何数量和位置关系,并证明你的结论.求证:PC是⊙O的切线
问题情境:用同样大小的黑色棋子按如图所示的规律摆放,则第2012个图共有多少枚棋子?建立模型:有些规律问题可以借助函数思想来探讨,具体步骤:第一步,确定变量;第二步:在直角坐标系中画出函数图象;第三步:根据函数图象猜想并求出函数关系式;第四步:把另外的某一点代入验证,若成立,则用这个关系式去求解.解决问题:根据以上步骤,请你解答“问题情境”.
一学校为了绿化校园环境,向某园林公司购买力一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元,请问该校共购买了多少棵树苗?