(1)计算: (2)先化简,再求值 (3)如图,平行四边形ABCD的对角线AC、BD交于点O,E、F在AC上,G、H在BD上,且AF=CE,BH=DG, 求证:AG∥HE
小明骑自行车从家去学校,途径装有红、绿灯的三个路口.假设他在每个路口遇到红灯和绿灯的概率均为,则小明经过这三个路口时,恰有一次遇到红灯的概率是多少?请用画树状图的方法加以说明.
解方程:x2 -x -12=0.
先化简,再求值:()÷a,其中a=
已知:如图,抛物线与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0). (1)求该抛物线的解析式; (2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标; (3)若平行于x轴的动直线与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
如图,AD是圆O的切线,切点为A,AB是圆O 的弦.过点B作BC//AD,交圆O于点C,连接AC,过点C作CD//AB,交AD于点D.连接AO并延长交BC于点M,交过点C的直线于点P,且ÐBCP=ÐACD. (1) 判断直线PC与圆O的位置关系,并说明理由: (2) 若AB=9,BC=6,求PC的长.