(本小题满分12分)如图,已知直线PA交⊙0于A、B两点,AE是⊙0的直径.点C为⊙0上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D。(1)求证:CD为⊙0的切线;(2)若DC+DA=6,⊙0的直径为l0,求AB的长度.
(本题7分)某市光明中学全体学生积极参加“同心协力,抗震救灾”活动,九年级甲班两位同学对本班捐款情况作了统计:全班50人共捐款900元,两位同学分别绘制了两幅不完整的统计图(注:每组含最小值,不含最大值)请你根据图中的信息,解答下列问题:(1)从图11中可以看出捐款金额在15-20元的人数有多少人?(2)补全条形统计图,并计算扇形统计图的值;(3)全校共有1268人,请你估计全校学生捐款的总金额大约是多少元?
(本题6分)如图,四边形是正方形,点在上,,垂足为,请你在上确定一点,使,请你写出两种确定点G的方案,并写出其中一种方案的具体作法和证明. 方案
一: ;
二:(1)作法:
(本题5分)先化简,再选取一个使原式有意义的的值代入求值.
如图,在Rt△ABC中,∠C=90°,AC=BC=4cm,点D为AC边上一点,且AD=3cm,动点E从点A出发,以1cm/s的速度沿线段AB向终点B运动,运动时间为x s.作∠DEF=45°,与边BC相交于点F.设BF长为ycm.(1)当x= ▲ s时,DE⊥AB;(2)求在点E运动过程中,y与x之间的函数关系式及点F运动路线的长;(3)当△BEF为等腰三角形时,求x的值.
操作:小明准备制作棱长为1cm的正方体纸盒,现选用一些废弃的圆形纸片进行如下设计: 纸片利用率=×100%发现:(1)方案一中的点A、B恰好为该圆一直径的两个端点.你认为小明的这个发现是否正确,请说明理由.(2)小明通过计算,发现方案一中纸片的利用率仅约为38.2%.请帮忙计算方案二的利用率,并写出求解过程.探究:(3)小明感觉上面两个方案的利用率均偏低,又进行了新的设计(方案三),请直接写出方案三的利用率.