(本小题满分12分)如图,已知直线PA交⊙0于A、B两点,AE是⊙0的直径.点C为⊙0上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D。(1)求证:CD为⊙0的切线;(2)若DC+DA=6,⊙0的直径为l0,求AB的长度.
如图,抛物线交轴于两点(的左侧),交轴于点,顶点为。(1)求点的坐标;(2)求四边形的面积;(3)抛物线上是否存在点,使得,若存在,请求出点的坐标;若不存在,请说明理由。
如图,等边△ABC中,点E、F分别是AB、AC的中点,P为BC上一点,连接EP,作等边△EPQ,连接FQ、EF。(1)若等边的边长为20,且,求等边的边长;(2)求证:。
如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象在第一象限内交于点,与轴交于点,与轴交于点,。(1)求一次函数和反比例函数的解析式;(2)若在轴上存在点,使得,求点的坐标。
如图,点A是实验中学图书馆所在位置,每天早上9点有一辆洒水车以100米/分的速度从位于A点北偏东方向的B处开始沿着杏坛路BC洒水,已知杏坛路位于B点南偏西方向,AB的距离为800米,在离洒水车600米的区域内均会受到音乐声的影响。请问:(1)∠ABC的度数为 °;(2)洒水车的音乐声是否对图书馆产生影响?若有影响,请求出影响持续的时间;若无影响,请说明理由。(,,,,,)
先化简,再求值:,其中是方程的根。