(本小题满分12分)如图,已知直线PA交⊙0于A、B两点,AE是⊙0的直径.点C为⊙0上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D。(1)求证:CD为⊙0的切线;(2)若DC+DA=6,⊙0的直径为l0,求AB的长度.
点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.
如图,已知二次函数图象的顶点坐标为C(1,0),直线与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴上.(1)求的值及这个二次函数的关系式;(2)P为线段AB上的一个动点(点P与A、B不重合),过P作轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为,点P的横坐标为,求与之间的函数关系式,并写出自变量的取值范围;(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由.
如图,D是AC上一点,BE∥AC,BE=AD,AE分别交BD、BC于点F、G,∠1=∠2.求证:FD2=FG·FE.
某工厂生产的某种产品按质量分为1 0个档次.第1档次(最低档次)的产品一天能生产7 6件,每件利润10元.每提高一个档次,每件利润增加2元,但一天产量减少4件.若生产第x档次的产品一天的总利润为1080元,求该产品的质量档次.
如图,矩形ABCD中,E为BC上一点,DF⊥AE于F.(1)ΔABE与ΔADF相似吗?请说明理由.(2)若AB=6,AD=12,BE=8,求FD的长.