如图,已知,以为直径,为圆心的半圆交于点,点为的中点,连接交于点,为的角平分线,且,垂足为点。(1) 求证:是半圆的切线;(2) 若,,求的长。
如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BF=DE.求证:AE∥CF.
(1)计算:(2)计算:.
如图,已知直线y=x与抛物线交于A、B两点.(1)求交点A、B的坐标;(2)记一次函数y=x的函数值为y1,二次函数的函数值为y2.若y1>y2,求x的取值范围;(3)在该抛物线上存在几个点,使得每个点与AB构成的三角形为等腰三角形?并求出不少于3个满足条件的点P的坐标.
如图,要建造一个直角梯形的花圃.要求AD边靠墙,CD⊥AD,AB:CD=5:4,另外三边的和为20米.设AB的长为5x米.(1)请求出AD的长(用含字母x的式子表示);(2)若该花圃的面积为50米2,且周长不大于30米,求AB的长.
如图,抛物线y=﹣x2+4与x轴交于A、B两点,与y轴交于C点,点P是抛物线上的一个动点且在第一象限,过点P作x轴的垂线,垂足为D,交直线BC于点E.(1)求点A、B、C的坐标和直线BC的解析式;(2)求△ODE面积的最大值及相应的点E的坐标;(3)是否存在以点P、O、D为顶点的三角形与△OAC相似?若存在,请求出点P的坐标,若不存在,请说明理由.