已知,AB是⊙O的直径,AB=8,点C在⊙O的半径OA上运动,PC⊥AB,垂足为C,PC=5,PT为⊙O的切线,切点为T.⑴如图⑴,当C点运动到O点时,求PT的长;⑵如图⑵,当C点运动到A点时,连结PO、BT,求证:PO∥BT;⑶如图⑶,设,,求与的函数关系式及的最小值.
计算或化简求值(1)(2)先化简:,其中
已知,关于x的二次函数,(k为正整数).(1)若二次函数的图象与x轴有两个交点,求k的值.(2)若关于x的一元二次方程(k为正整数)有两个不相等的整数解,点A(m,y1),B(m+1,y2),C(m+2,y3)都在二次函数(k为正整数)图象上,求使y1≤y2≤y3成立的m的取值范围.(3)将(2)中的抛物线平移,当顶点至原点时,直线y=2x+b交抛物线于A(-1,n)、B(2,t)两点,问在y轴上是否存在一点C,使得△ABC的内心在y轴上.若存在,求出点C的坐标;若不存在,请说明理由.
如图,在⊙O中,AB为⊙O的直径,AC为弦,OC=4,∠OAC=60°.(1)求∠AOC的度数;(2)在图(1)中,P为直径BA的延长线上一点,且,求证:PC为⊙O的切线.(3)如图(2),一动点M从A点出发,在⊙O上按逆时针方向运动一周(点M不与点C重合),当时,求动点M所经过的弧长.
如图,在直角梯形OABC中,OA∥BC,A、B两点的坐标分别为A(13,0),B(11,12),动点P,Q分别从O、B两点同时出发,点P以每秒2个单位的速度沿OA向终点A运动,点Q以每秒1个单位的速度沿BC向C运动,当点P停止运动时,点Q同时停止运动.线段OB、PQ相交于点D,过点D作DE∥OA,交AB于点E,设动点P、Q运动时间为t(单位:s)(1)当t为何值时,四边形PABQ是平行四边形,请写出推理过程;(2)通过推理论证:在P、Q的运动过程中,线段DE的长度不变;
正常水位时,抛物线拱桥下的水面宽为BC=20m,水面上升3m达到该地警戒水位DE时,桥下水面宽为10m.若以BC所在直线为x轴,BC的垂直平分线为y轴,建立如图所示的平面直角坐标系.(1)求桥孔抛物线的函数关系式;(2)如果水位以0.2m/h的速度持续上涨,那么达到警戒水位后,再过多长时间此桥孔将被淹没;(3)当达到警戒水位时,一艘装有防汛器材的船,露出水面部分的宽为4m,高为0.75m,通过计算说明该船能否顺利通过此拱桥?