(本小题满分12分)某医院计划从10名医生(7男3女)中选5人组成医疗小组下乡巡诊.(I)设所选5人中女医生的人数为,求的分布列及数学期望;(II)现从10名医生中的张强、李军、王刚、赵永4名男医生,李莉、孙萍2名女医生共6人中选一正二副3名组长,在张强被选中的情况下,求李莉也被选中的概率.
设a,b,c分别为△ABC的内角A,B,C的对边,,与的夹角为 (1)求角C的大小; (2)已知,△ABC的面积,求a+b的值.
如图,已知矩形ABCD是圆柱O1O2的轴截面,N在上底面的圆周O2上,AC、BD相交于点M; (1)求证:CN⊥平面ADN; (2)已知圆锥MO1和圆锥MO2的侧面展开图恰好拼成一个半径为2的圆,直线BC与平面CAN所成角的正切值为,求异面直线AB与DN所成角的值.
已知函数f(x)=|x﹣5|+|x﹣3|. (Ⅰ)求函数f(x)的最小值m; (Ⅱ)若正实数a,b满足+=,求证:+≥m.
在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ﹣)=,C与l有且仅有一个公共点. (Ⅰ)求a; (Ⅱ)O为极点,A,B为C上的两点,且∠AOB=,求|OA|+|OB|的最大值.
如图,AB是⊙O的直径,C、F是⊙O上的点,AC是∠BAF的平分线,过点C作CD⊥AF,交AF的延长线于点D. (1)求证:CD是⊙O的切线. (2)过C点作CM⊥AB,垂足为M,求证:AM•MB=DF•DA.