.已知圆以为圆心,为半径,过点作直线与圆交于不同两点(Ⅰ)若求直线的方程;(Ⅱ)当直线的斜率为时,过直线上一点作圆的切线为切点使求点的坐标;(Ⅲ)设的中点为试在平面上找一点,使的长为定值.
已知函数.(Ⅰ) 若为的极值点,求实数的值;(Ⅱ) 若在上为增函数,求实数的取值范围; (Ⅲ) 若时,方程有实根,求实数的取值范围。
设椭圆的离心率,右焦点到直线的距离为坐标原点。 (I)求椭圆的方程; (II)过点作两条互相垂直的射线,与椭圆分别交于两点,证明点到直 线的距离为定值,并求弦长度的最小值
为了迎接2009年10月1日建国60周年,某城市为举办的大型庆典活动准备了四种保证安全的方案,列表如下:
其中安全系数表示实施此方案能保证安全的系数,每种方案相互独立,每种方案既可独立用,又可以与其它方案合用,合用时,至少有一种方案就能保证整个活动的安全。 (I)若总经费在1200万元内(含1200万元),如何组合实施方案可以使安全系数最高? (II)要保证安全系数不小于0.99,至少需要多少经费?
如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF且BE<CF,∠BCF=,AD=,EF=2.(Ⅰ)求证: AE∥平面DCF;(Ⅱ)若,且二面角A—EF—C的大小为,求的长。
质点在轴上从原点出发向右运动,每次平移一个单位或两个单位,且移动一个单位的概率为,移动2个单位的概率为,设质点运动到点的概率为。 (Ⅰ)求和;(Ⅱ)用表示,并证明是等比数列; (Ⅲ)求.