今年“五一“假期.某数学活动小组组织一次登山活动.他们从山脚下A点出发沿斜坡AB到达B点.再从B点沿斜坡BC到达山顶C点,路线如图所示.斜坡AB的长为1040米,斜坡BC的长为400米,在C点测得B点的俯角为30°.已知A点海拔121米.C点海拔721米.(1)求B点的海拔;(2)求斜坡AB的坡度
在平面直角坐标系中, ΔABC 的位置如图所示.(每个小方格都是边长为1个单位长度的正方形)
(1)画出 ΔABC 关于 y 轴对称的△ A 1 B 1 C 1 ;
(2)将 ΔABC 绕点 B 逆时针旋转 90 ° ,画出旋转后得到的△ A 2 B C 2 ,并直接写出此过程中线段 BA 扫过图形的面积(结果保留 π )
在平面直角坐标系 xOy 中, 抛物线 y = a x 2 + bx + c 的开口向上, 且经过点 A ( 0 , 3 2 )
(1) 若此抛物线经过点 B ( 2 , − 1 2 ) ,且与 x 轴相交于点 E , F .
①填空: b = (用 含 a 的代数式表示) ;
②当 E F 2 的值最小时, 求抛物线的解析式;
(2) 若 a = 1 2 ,当 0 ⩽ x ⩽ 1 ,抛物线上的点到 x 轴距离的最大值为 3 时, 求 b 的值 .
如图1,四边形 ABCD 的对角线 AC , BD 相交于点 O , OB = OD , OC = OA + AB , AD = m , BC = n , ∠ ABD + ∠ ADB = ∠ ACB .
(1)填空: ∠ BAD 与 ∠ ACB 的数量关系为 ∠ BAD + ∠ ACB = 180 ° ;
(2)求 m n 的值;
(3)将 ΔACD 沿 CD 翻折,得到△ A ' CD (如图 2 ) ,连接 BA ' ,与 CD 相交于点 P .若 CD = 5 + 1 2 ,求 PC 的长.
如图,在 ΔABC 中, ∠ C = 90 ° , AC = 3 , BC = 4 ,点 D , E 分别在 AC , BC 上(点 D 与点 A , C 不重合),且 ∠ DEC = ∠ A ,将 ΔDCE 绕点 D 逆时针旋转 90 ° 得到△ DC ' E ' .当△ DC ' E ' 的斜边、直角边与 AB 分别相交于点 P , Q (点 P 与点 Q 不重合)时,设 CD = x , PQ = y .
(1)求证: ∠ ADP = ∠ DEC ;
(2)求 y 关于 x 的函数解析式,并直接写出自变量 x 的取值范围.
如图, AB 是 ⊙ O 直径,点 C 在 ⊙ O 上, AD 平分 ∠ CAB , BD 是 ⊙ O 的切线, AD 与 BC 相交于点 E .
(1)求证: BD = BE ;
(2)若 DE = 2 , BD = 5 ,求 CE 的长.