某港口要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口北偏西且与该港口相距20海里的处,并以30海里/小时的航行速度沿正东方向匀速行驶.假设该小船沿直线方向以海里/小时的航行速度匀速行驶,经过小时与轮船相遇.(Ⅰ)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(Ⅱ)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向与航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.
(本小题满分12分已知二次函数f(x) 对任意x∈R,都有f (1-x)="f" (1+x)成立,设向量a="(sinx,2)," b=(2sinx,), c=(cos2x,1),d=(1,2)。 (1)分别求a·b和c·d的取值范围; (2)当x∈[0,π]时,求不等式f(a·b)>f(c·d)的解集.
(本小题满分12分)已知向量a=(cosx,2),b=(sinx,-3). (1)当a∥b时,求3cos2x-sin2x的值; (2)求函数f(x)=(a-b)·a在x∈[-,0]上的值域.
(文) (本小题满分12分) 已知递增的等比数列{an}满足a2+a3+a4=28,且a3+2是a2、a4的等差中项. (1)求数列{an}的通项公式; (2)若bn=log2an+1,Sn是数列{bn}的前n项和,求使Sn>42+4n成立的n的最小值.
(本小题满分12分) 已知数列{an}的前n项和Sn=12n-n2,求数列{|an|}的前n项和Tn. 剖析:由Sn=12n-n2知Sn是关于n的无常数项的二次函数(n∈N*),可知{an}为等差数列,求出an,然后再判断哪些项为正,哪些项为负,最后求出Tn.
(文) (本小题满分12分已知函数, (1)求函数的值域和最小正周期; (2)求函数的递减区间;