请考生在(22)、(23)、(24)三题中任选一题作答,如果多答,则按做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应题号右侧的方框涂黑.(22)(本小题满分10分)选修4—1:几何证明选讲。如图,⊙O是△的外接圆,D是的中点,BD交AC于E.(Ⅰ)求证:CD=DE·DB;(Ⅱ)若,O到AC的距离为1,求⊙O的半径.
.围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:元)。 (Ⅰ)将y表示为x的函数 (Ⅱ)试确定x,使修建此矩形场地围墙的总费用最小,求出最小总费用。
已知关于的不等式的解集为,不等式的解集为 (1)若,求;(2)若,求正数的取值范围。
(本小题满分13分) 设函数. (1)求证:不论为何实数总为增函数; (2)确定的值,使为奇函数及此时的值域.
(本小题满分13分) 为了预防甲型流感,某学校对教室用药熏消毒法进行消毒. 已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为(a为常数),如图所示,根据图中提供的信息,回答下列问题: (1)求从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式; (2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过多少小时后,学生才能回到教室.
(本小题满分12分) 设函数,如果,求的取值范围.