((本小题满分12分)已知函数,(1)若曲线在处切线的斜率为,求实数的值.(2)求函数的极值点.
(本小题满分12分)已知p:方程x2+mx+1=0有两个不相等的负实根;q:不等式4x2+4(m-2)x+1>0的解集为R,若p或q为真命题,p且q为假命题,求m的取值范围.
(本小题满分12分)已知9x-10·3x+9≤0,求函数y=()x-1-4()x+2的最大值和最小值,并指出取得最值时x的值
(本小题满分14分)已知函数. (Ⅰ)若函数f(x)在其定义域内为单调函数,求a的取值范围; (Ⅱ)若函数f(x)的图象在x = 1处的切线的斜率为0,且,已 知a1 = 4,求证:an³ 2n + 2; (Ⅲ)在(Ⅱ)的条件下,试比较与的大小,并说明你的理由.
(本小题满分13分)定长为3的线段AB两端点A、B分别在轴,轴上滑动,M在线段AB上,且(1)求点M的轨迹C的方程;(2)设过且不垂直于坐标轴的动直线交轨迹C于A、B两点,问:线段上是否存在一点D,使得以DA,DB为邻边的平行四边形为菱形?作出判断并证明。
(本小题满分12分)已知函数(1)求函数的最大值;(2)当时,求证;