(本小题满分12分) 甲、乙两人参加某电视台举办的答题闯关游戏,按照规则,甲先从道备选题中一次性抽取道题独立作答,然后由乙回答剩余题,每人答对其中题就停止答题,即闯关成功.已知在道备选题中,甲能答对其中的道题,乙答对每道题的概率都是.(Ⅰ)求甲、乙至少有一人闯关成功的概率;(Ⅱ)设甲答对题目的个数为ξ,求ξ的分布列及数学期望.
我校高二年级举行环保知识大奖赛,比赛分初赛和决赛两部分,初赛采用选手选一题答一题的方式进行,每位选手最多有5次选题答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题者直接进入决赛,答错3题者则被淘汰,已知选手甲答题连续两次答错的概率为(已知甲回答每个问题的正确率相同,并且相互之间没有影响). (1)求甲选手回答一个问题的正确率; (2)求选手甲可进入决赛的概率; (3)设选手甲在初赛中答题的个数为,试写出的分布列,并求的数学期望.
在极坐标系中,极点为坐标原点O,已知圆C的圆心坐标为,半径 为,直线的极坐标方程为. (1)求圆C的极坐标方程; (2)若圆C和直线相交于A,B两点,求线段AB的长.
已知的第五项的二项式系数与第三项的二项式系数比为14:3,求展开式中的常数项.
等差数列{}中,++=-12, 且 ··="80." 且公差求: (1)通项公式及前n项和 (2)若在每相邻两项中间插入一个新的数得到一个新的数列记为{},求的前n项和.
已知函数为常数). (1)求函数的最小正周期;(2)求函数的单调递增区间; (3)若时,的最小值为 – 2 ,求的值.