(满分10分)在△中,分别为内角A,B,C所对的边长,,,,求边BC上的高.
已知角α终边上一点P(-,y),且sinα=y,求cosα和tanα的值.
α是第二象限角,P(x,)为其终边上一点,且cosα=x,求sinα的值.
设动点P(x,y)(x≥0)到定点F的距离比到y轴的距离大.记点P的轨迹为曲线C.(1)求点P的轨迹方程;(2)设圆M过A(1,0),且圆心M在P的轨迹上,BD是圆M在y轴上截得的弦,当M运动时弦长BD是否为定值?说明理由;(3)过F作互相垂直的两直线交曲线C于G、H、R、S,求四边形GRHS面积的最小值.
已知E(2,2)是抛物线C:y2=2px上一点,经过点(2,0)的直线l与抛物线C交于A,B两点(不同于点E),直线EA,EB分别交直线x=-2于点M,N.(1)求抛物线方程及其焦点坐标;(2)已知O为原点,求证:∠MON为定值.
已知抛物线C:y2=2px(p>0)过点A(1,-2).(1)求抛物线C的方程,并求其准线方程.(2)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OA与l的距离等于?若存在,求出直线l的方程;若不存在,说明理由.