一不透明的袋子中装有4个球,它们除了上面分别标有的号码l、2、3、4不同外,其余均相同.将小球搅匀,并从袋中任意取出一球后放回;再将小球搅匀,并从袋中再任意取出一球.求第二次取出球的号码比第一次的大的概率.(请用“画树状图”或“列表”的方法给出分析过程,并写出结果)
(本题8分)在一次数学课上,老师在屏幕上出示了一个例题:在△ABC中,D,E分别是AB,AC上的一点,BE与CD交于点O,画出图形(如图),给出下列四个条件:①∠DBO=∠ECO;②∠BDO=∠CEO;③BD=CE;④OB=OC. (1)要求同学从这四个等式中选出两个作为已知条件,可判定△ABC是等腰三角形. 请你用序号在横线上写出所有情形.答: (2)选择第(1)题中的一种情形,说明△ABC是等腰三角形的理由,并写出解题过程. 解:我选择 . 证明:
(本题7分)如图,某住宅小区在施工过程中留下了一块空地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,小区为美化环境,欲在空地上铺草坪,已知草坪每平方米30元,试问用该草坪铺满这块空地共需花费多少元?
(本题7分)数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下: 根据以上情境,解决下列问题: (1)李老师用尺规作角平分线时,用到的三角形全等的判定方法是 . (2)小聪的作法正确吗?请说明理由.
(本题6分)如图是一张直角三角形的纸片,两直角边AC=6 cm、BC=8 cm,现将△ABC折叠,使点B与点A重合,折痕为DE,求BD的长度.
(本题6分)如图,在△ABC中,AB=AC=6,BC=10,AB的垂直平分线分别交BC、AB于点D、E.(1)求△ACD的周长;(2)若∠C=25°,求∠CAD的度数.