如图,在矩形地块ABCD中有两条道路AF,EC,其中AF是以A为顶点的抛物线段,EC是线段.AB=2km,BC=6km,AE=BF=4km.在两条道路之间计划修建一个花圃,花圃形状为直角梯形QPRE(线段EQ和RP为两个底边,如图所示).求该花圃的最大面积.
(本小题满分12分) 设的极小值为,其导函数的图像开口向下且经过点,. (Ⅰ)求的解析式;(Ⅱ)方程有唯一实数解,求的取值范围. (Ⅲ)若对都有恒成立,求实数的取值范围.
(本小题满分12分) 已知函数. (1)若函数在(,1)上单调递减,在(1,+∞)上单调递增,求实数a的值; (2)是否存在正整数a,使得在(,)上既不是单调递增函数也不是单调递减函数?若存在,试求出a的值,若不存在,请说明理由.
(本小题满分12分已知的内角、、的对边分别为、、,,且 (1)求角; (2)若向量与共线,求、的值.
(本小题满分12分) 已知,设= (1).求的最小正周期和单调递减区间; (2)设关于的方程=在有两个不相等的实数根,求的取值范围.
(10分) 测量河对岸的塔高时,可以选与塔底在同一水平面内的两个测点与.现测得,并在点测得塔顶的仰角为,求塔高。