已知函数 f ( x ) = x 3 + 3 a x 2 + ( 3 - 6 a ) x + 12 a - 4 ( a ∈ R ) .
(1)证明:曲线 y = f ( x ) 在 x = 0 处的切线过点 ( 2 , 2 ) ; (2)若 f ( x ) 在 x = x 0 处取得最小值, x 0 ∈ ( 1 , 3 ) ,求 a 的取值范围.
设函数f(x)=x3-3ax2+3bx的图象在处的切线方程为12x+y-1=0. ⑴求a,b的值; ⑵求函数f(x)在闭区间上的最大值和最小值.
已知向量. ⑴当的值; ⑵求的最小正周期和单调递增区间
在等比数列{}中,已知.求{an}的前8项和.
设函数>1),且的最小值为,若,求的取值范围。
以直角坐标系的原点为极点,轴的正半轴为极轴,已知点的直角坐标为,点的极坐标为,若直线过点,且倾斜角为,圆以为 圆心、为半径。 (I)写出直线的参数方程和圆的极坐标方程; (Ⅱ)试判定直线和圆的位置关系。