(本小题满分14分)如图,在四棱锥中,底面为平行四边形,平面,在棱上.(Ⅰ)当时,求证平面(Ⅱ)当二面角的大小为时,求直线与平面所成角的正弦值.
已知椭圆:经过点,且焦点与双曲线的焦点相同.(Ⅰ)求椭圆的方程;(Ⅱ)若过点而不过点的动直线交椭圆于两点,证明:.
如图,为矩形,为梯形,平面平面,,.(Ⅰ)若为中点,求证:∥平面;(Ⅱ)求平面与所成锐二面角的大小.
两个人在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设分别表示甲,乙,丙3个盒中的球数.(Ⅰ)求的概率;(Ⅱ)记,求随机变量的概率分布列和数学期望.
在平面直角坐标系中,设锐角的始边与轴的非负半轴重合,终边与单位圆交于点,将射线绕坐标原点按逆时针方向旋转后与单位圆交于点. 记.(Ⅰ)讨论函数的单调性;(Ⅱ)设的角所对的边分别为,若,且,,求的面积.
选修4-5:不等式选讲已知函数.(Ⅰ)若不等式的解集为,,求证:.(Ⅱ)若在(Ⅰ)的条件下,存在实数t,使得成立,求实数m的取值范围.