如图,在圆锥 P O 中,已知 P O = 2 , ⊙ O 的直径 A B = 2 ,点 C 在 A B 上,且 ∠ C A B = 30 ° , D 为 A C 的中点. (I)证明: A C ⊥ 平面 P O D
(II)求直线和平面 P A C 所成角的正弦值.
(12分)如图,的角平分线AD的延长线交它的外接圆于点E (I)证明: (II)若的面积,求的大小。
.(12分)设是一个离散型随机变量,其分布列如下表,试求随机变量的期望与方差.
.(12分)已知的展开式中前三项的系数成等差数列. (1)求n的值; (2)求展开式中系数最大的项.
(12分) 一盒中装有分别标记着1,2,3,4的4个小球,每次从袋中取出一只球,设每只小球被取出的可能性相同. (1)若每次取出的球不放回盒中,现连续取三次球,求恰好第三次取出的球的标号为最大数字的球的概率; (2)若每次取出的球放回盒中,然后再取出一只球,现连续取三次球,这三次取出的球中标号最大数字为,求的分布列与数学期望.
(10分)对于数据组
(1)做散点图,你能直观上能得到什么结论?. (2)求线性回归方程.