如图,已知正三棱柱的底面正三角形的边长是2,D是的中点,直线与侧面所成的角是. (Ⅰ)求二面角的大小; (Ⅱ)求点到平面的距离.
已知函数. (Ⅰ)解不等式: ; (Ⅱ)当时, 不等式恒成立,求实数a的取值范围.
在直角坐标系中,以原点为极点,x轴的正半轴为极轴建坐标系,已知曲线,已知过点的直线的参数方程为:(t为参数),直线与曲线C分别交于M,N. (Ⅰ)写出曲线C和直线的普通方程; (Ⅱ)若成等比数列,求a的值.
已知在中,D是AB上一点,的外接圆交BC于E,. (Ⅰ)求证:; (Ⅱ)若CD平分,且,求BD的长.
已知, (Ⅰ)当时,若在上为减函数,在上是增函数,求值; (Ⅱ)对任意恒成立,求的取值范围.
椭圆过点,离心率为,左、右焦点分别为,过的直线交椭圆于两点. (Ⅰ)求椭圆C的方程; (Ⅱ)当的面积为时,求直线的方程.