如图,在三棱柱中,,顶点在底面上的射影恰为点,且.(Ⅰ)证明:平面平面; (Ⅱ)求棱与所成的角的大小;(Ⅲ)若点为的中点,并求出二面角的平面角的余弦值.
点(-1,k)在伸压变换矩阵之下的对应点的坐标为(-2,-4),求m、k的值.
求点A(2,0)在矩阵对应的变换作用下得到的点的坐标.
如图,在△ABC中,∠C=90°,BE是角平分线,DE⊥BE交AB于D,圆O是△BDE的外接圆.(1)求证:AC是圆O的切线;(2)如果AD=6,AE=6,求BC的长.
如图,正三角形ABC外接圆的半径为1,点M、N分别是边AB、AC的中点,延长MN与△ABC的外接圆交于点P,求线段NP的长.
如图,弦AB与CD相交于⊙O内一点E,过E作BC的平行线与AD的延长线相交于点P.已知PD=2DA=2,求PE.