某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响. 已知某学生只选修甲的概率为0.08,只选修甲和乙的概率是0.12,至少选修一门的概率是0.88,用表示该学生选修的课程门数和没有选修的课程门数的乘积.记“函数为R上的偶函数”为事件A,求事件A的概率;
(本题满分16分,第1小题5分,第2小题6分,第3小题5分)已知函数,其中为常数,且(1)若是奇函数,求的取值集合A;(2)(理)当时,设的反函数为,且函数的图像与的图像关于对称,求的取值集合B;(文)当时,求的反函数;(3)(理)对于问题(1)(2)中的A、B,当时,不等式恒成立,求的取值范围。(文)对于问题(1)中的A,当时,不等式恒成立,求的取值范围。
(本题满分14分,第1小题5分,第2小题9分)一校办服装厂花费2万元购买某品牌运动装的生产与销售权,根据以往经验,每生产1百套这种品牌运动装的成本为1万元,每生产x(百套)的销售额R(x)(万元)满足:(1)该服装厂生产750套此种品牌运动装可获得利润多少万元?(2)该服装厂生产多少套此种品牌运动装利润最大?此时,利润是多少万元?
(本题满分14分,第1小题8分,第2小题6分)(理)的周长为。(1)求函数的解析式 ,并写出函数的定义域;(2)求函数的值域。(文)设函数(1)求函数的最大值和及相应的的值;(2)设A,B,C为的三个内角,,求角C的大小及边的长。
(本题满分12分,第1小题6分,第小题6分)设函数的定义域为集合A,函数的定义域为集合B。(1)求A∩B;(2)若,求实数的取值范围。
(本小题满分14分)已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点。(1)求椭圆C的方程;(2)是否存在平行于OA的直线,使得直线与椭圆C有公共点,且直线OA与的距离等于4?若存在,求出直线的方程;若不存在,请说明理由。