如图,在 △ A B C 中, ∠ B = π 2 , A B = B C = 2 , P 为 A B 边上一动点, P D / / B C 交 A C 于点 D ,现将 △ P D A 沿 P D 翻折至 △ P D A ` ,使平面 P D A ` ⊥ 平面 P B C D .
(1)当棱锥 A ` - P B C D 的体积最大时,求 P A 的长; (2)若点 P 为 A B 的中点,E为 A C ` 的中点,求证: A ` B ⊥ D E .
已知函数的周期为,且,将函数图像上的所有点的横坐标伸长为原来的倍(纵坐标不变),再将所得图像向右平移个单位长度后得到函数的图像. (1)求函数与的解析式; (2)是否存在,使得按照某种顺序成等差数列?若存在,请求出的值,若不存在,说明理由; (3)求实数与正整数,使得在内恰有2013个零点.
已知数列满足:,令,为数列的前项和。 (1)求和; (2)对任意的正整数,不等式恒成立,求实数的取值范围.
已知函数. (1)求的最小正周期和单调递增区间; (2)如果的三边满足,且边所对的角为,试求的范围及此时函数的值域.
已知某区的绿化覆盖率的统计数据如下表所示:
如果以后的几年继续依此速度发展绿化,那么到第几年年底该区的绿化覆盖率可超过?
已知三个数成等比数列,它们的积为,且是与的等差中项,求这三个数.