设p:函数y=loga(x+1)(a>0且a≠1)在(0,+∞)上单调递减; q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.如果p∧q为假,p∨q为真,求实数a的取值范围.
设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},其中x∈R,如果A∩B=B,求实数a的取值范围.
设集合A为函数y=ln(-x2-2x+8)的定义域,集合B为函数y=x+的值域.求A∩B
设曲线在点处的切线斜率为,且.对一切实数,不等式恒成立(≠0).(1) 求的值;(2) 求函数的表达式;(3) 求证:>.
已知函数(e为自然对数的底数).(1)求函数的单调增区间;(2)设关于x的不等式≥的解集为M,且集合,求实数t的取值范围.