(本小题满分14分)椭圆E中心在原点O,焦点在x轴上,其离心率e=,过点C(-1,0)的直线l与椭圆E相交于A、B两点,且C分有向线段的比为2. (1)用直线l的斜率k(k≠0)表示△OAB的面积; (2)当△OAB的面积最大时,求椭圆E的方程.
甲居住在城镇的处,准备开车到单位处上班,若该地各路段发生堵车事件都是相互独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如图(例如:算作两个路段:路段发生堵车事件的概率为,路段发生堵车事件的概率为).(1)请你为甲选择一条由到的最短路线(即此人只选择从西向东和从南向北的路线),使得途中发生堵车事件的概率最小;(2)设甲在路线中遇到的堵车次数为随机变量,求的数学期望.
如图示,边长为2的正方形ABCD与正三角形ADP所在平面互相垂直,M是PC的中点。 (1)求证:∥平面; (2)求二面角的余弦值。
已知某市2011年新建住房400万平方米,其中有250万平方米是中低价房。预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%,且每年新建住房中,中低价房的面积均比上一年增加50万平方米。(1) 到哪一年底,该市历年所建中低价房的累计面积(以2011年为累计的第一年)将首次不少于4750万平方米?(2) 到哪一年底,该年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?(参考数据:)
在ABC中,a、b、c分别是角 A、B、C所对的边,设,且, 。 (1)判断ABC的形状;(2)的取值范围。
已知函数,,.(1)若函数在区间上不是单调函数,试求的取值范围;(2)直接写出(不需要给出演算步骤)函数的单调递增区间;(3)如果存在,使函数,在处取得最小值,试求的最大值.