如右图所示,四边形ABCD内接于⊙O,AB=AD,过A点的切线交CB的延长线于E点.求证:AB2=BE·CD.
、(本小题满分14分)已知函数,数列满足递推关系式:(),且、(Ⅰ)求、、的值;(Ⅱ)用数学归纳法证明:当时,;(Ⅲ)证明:当时,有、
(本小题满分13分)已知函数、(Ⅰ)求函数的单调区间;(Ⅱ)若为正常数,设,求函数的最小值;(Ⅲ)若,,证明:、
(本小题满分12分)一个口袋中装有大小相同的个红球(且)和个白球,一次摸奖从中摸两个球,两个球的颜色不同则为中奖。(Ⅰ)试用表示一次摸奖中奖的概率;(Ⅱ)记从口袋中三次摸奖(每次摸奖后放回)恰有一次中奖的概率为,求的最大值?(Ⅲ)在(Ⅱ)的条件下,将个白球全部取出后,对剩下的个红球全部作如下标记:记上号的有个(),其余的红球记上号,现从袋中任取一球。表示所取球的标号,求的分布列、期望和方差。
(本小题满分12分)如图,已知是直角梯形,,,,平面.(1) 证明:;(2) 若是的中点,证明:∥平面;(3)若,求三棱锥的体积.
、扇形的周长为8.(1)若这个扇形的面积为3,求圆心角的大小;(2)求该扇形的面积取得最大值时圆心角的大小和弦长.