在平面直角坐标系xOy中,已知点A(-1, 0)、B(1, 0), 动点C满足条件:△ABC的周长为.记动点C的轨迹为曲线W.(Ⅰ)求W的方程;(Ⅱ)经过点(0, )且斜率为k的直线l与曲线W有两个不同的交点P和Q,求k的取值范围;(Ⅲ)已知点M(),N(0, 1),在(Ⅱ)的条件下,是否存在常数k,使得向量 与共线?如果存在,求出k的值;如果不存在,请说明理由.
(本小题满分12分)已知中的三个内角所对的边分别为,且满足,. (Ⅰ)求的值; (Ⅱ)求的面积.
(本小题满分12分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和. (1)求的值及的表达式; (2)隔热层修建多厚时,总费用达到最小,并求最小值.
(本小题满分12分)已知{}是首项为,公差为的等差数列,是其前项的和,且,. (Ⅰ)求数列{}的通项及; (Ⅱ)设是首项为1,公比为3的等比数列.求数列{}的通项公式及其前项和.
已知数列中中, (1)求证:数列是等比数列,并求数列的通项公式 (2)若数列满足,数列的前项和为,若不等式对一切恒成立,求的取值范围.
如图,三棱柱中,侧棱平面,为等腰直角三角形,,且分别是的中点. (Ⅰ)求证:平面; (Ⅱ)求锐二面角的余弦值.