已知F是椭圆:=1的右焦点,点P是椭圆上的动点,点Q是圆:+=上的动点.(1)试判断以PF为直径的圆与圆的位置关系;(2)在x轴上能否找到一定点M,使得=e (e为椭圆的离心率)?若存在,求出点M的坐标;若不存在,请说明理由.
有穷数列的前项和,现从中抽取某一项(不包括首项、末项)后,余下的项的平均值是79. ①求数列的通项;②求这个数列的项数,抽取的是第几项?
设关于的一元二次方程()有两根和且满足.①试用表示;②求证:数列是等比数列. ③当时,求数列的通项公式.
已知、、分别是的三个内角、、所对的边;(1) 若面积求、的值;(2)若且,试判断的形状.
设是一个公差为的等差数列,它的前10项和且,,成等比数列.(1)证明;(2)求公差的值和数列的通项公式.
如图,测量河对岸的塔高时,可以选与塔底在同一水平面内的两个测点与.现测得,并在点测得塔顶的仰角为,求塔高.