【原创】(本小题满分13分)已知函数.(1)若f(x)的图象与g(x)的图象所在两条曲线的一个公共点在y轴上,且在该点处两条曲线的切线互相垂直,求b和c的值.(2)若a=c=1,b=0,试比较f(x)与g(x)的大小,并说明理由;(3)若b=c=0,证明:对任意给定的正数a,总存在正数m,使得当x时,恒有f(x)>g(x)成立.
(本小题满分12分) 在△ABC中,角A,B,C所对的边分别为a,b,c且,a=1,b=2, (1)求C和c; (2)P为△ABC内任一点(含边界),点P到三边距离之和为d,设P到AB,BC距离分别为x,y,用x,y表示d并求d的取值范围.
(本小题满分12分) 甲、乙、丙三台机床各自独立的加工同一种零件,已知甲、乙、丙三台机床加工的零件是一等品的概率分别为0.7、0.6、0.8,乙、丙两台机床加工的零件数相等,甲机床加工的零件数是乙机床加工的零件数的二倍. (1)从甲、乙、丙加工的零件中各取一件检验,求至少有一件一等品的概率; (2)将三台机床加工的零件混合到一起,从中任意的抽取一件检验,求它是一等品的概率; (3)将三台机床加工的零件混合到一起,从中任意的抽取4件检验,其中一等品的个数记为X,求EX.
已知椭圆的离心率为, 直线与以原点为圆心、以椭圆的短半轴长为半径的圆相切。 (Ⅰ)求椭圆的方程; (Ⅱ)设椭圆的左焦点为F1,右焦点为F2,直线过点F1,且垂直于椭圆的长轴,动直 线垂直于点P,线段PF2的垂直平分线交于点M,求点M的轨迹C2的方程; (Ⅲ)若AC、BD为椭圆C1的两条相互垂直的弦,垂足为右焦点F2,求四边形ABCD的面积 的最小值.
(本小题满分12分)已知, , (Ⅰ)把表示为的函数并写出定义域; (Ⅱ)求的最值.
(本小题满分12分)已知三棱锥P—ABC中,PC⊥底面ABC,,, 二面角P-AB-C为,D、F分别为AC、PC的中点,DE⊥AP于E. (Ⅰ)求证:AP⊥平面BDE; (Ⅱ)求直线EB与平面PAC所成的角。