(本小题满分12分)设椭圆:的焦点分别为、,抛物线:的准线与轴的交点为,且.(I)求的值及椭圆的方程;(II)过、分别作互相垂直的两直线与椭圆分别交于、、、四点(如图),求四边形面积的最大值和最小值.
已知双曲线的右焦点与抛物线的焦点重合,求该双曲线的焦点到其渐近线的距离.
已知动圆与直线相切,且与定圆 外切,求动圆圆心的轨迹方程.
如图,在平行六面体中,,,,,,是的中点,设,,.(1)用表示;(2)求的长.
已知圆及点.(1)在圆上,求线段的长及直线的斜率;(2)若为圆上任一点,求的最大值和最小值;(3)若实数满足,求的最大值和最小值.
已知动点M到点A(2,0)的距离是它到点B(8,0)的距离的一半,求:(1)动点M的轨迹方程;(2)若N为线段AM的中点,试求点N的轨迹.