一个袋中有若干个大小相同的黑球、白球和红球。已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是。(Ⅰ)若袋中共有10个球,(i)求白球的个数;(ii)从袋中任意摸出3个球,记得到白球的个数为,求随机变量的数学期望。(Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于。并指出袋中哪种颜色的球个数最少。
(满分12分)渔船甲位于岛屿的南偏西方向处,且与岛屿相距海里,渔船乙以海里/小时的速度从岛屿出发沿正北方向航行,若渔船甲同时从处出发沿北偏东的方向追赶渔船乙,刚好用了2小时追赶上渔船乙. (Ⅰ)求渔船甲的速度; (Ⅱ)求的值.
已知函数f(x)=ax2+|x-a|() (1)当a=0时,写出f(x)的单调区间; (2)当a=1时,求f(x)的最小值; (3)试讨论关于x的方程f(x)=x3的解的个数.
解关于x的不等式:
已知函数f(x)是定义在R上的增函数. (1)aR,试比较f(a2)与f(a-1)的大小,并说明理由; (2)若对任意的xR,不等式f(ax2)﹤f(ax+1)恒成立.求实数a的取值范围.
已知函数f(x)=的定义域为集合A,函数g(x)=的定义域为集合B. (1)求集合A,B; (2)若A∩B=A,求实数a的取值范围.