已知的展开式前三项中的的系数成等差数列. (1)求展开式中所有的的有理项; (2)求展开式中系数最大的项.
(本小题满分12分)已知数列的前项和为,且;数列满足,..(Ⅰ)求数列,的通项公式;(Ⅱ)记,.求数列的前项和.
(本小题满分12分)如图,为正三角形,平面,,为的中点,,.(Ⅰ)求证:平面;(Ⅱ)求平面与平面所成的锐二面角的余弦值.
(本小题满分12分)口袋中装有除颜色,编号不同外,其余完全相同的2个红球,4个黑球.现从中同时取出3个球.(Ⅰ)求恰有一个黑球的概率;(Ⅱ)记取出红球的个数为随机变量,求的分布列和数学期望.
在平面直角坐标系中,已知动点,点点与点关于直线对称,且.直线是过点的任意一条直线.(1)求动点所在曲线的轨迹方程;(2)设直线与曲线交于两点,且,求直线的方程;(3) 设直线与曲线交于两点,求以的长为直径且经过坐标原点的圆的方程.
定义:若各项为正实数的数列满足,则称数列为“算术平方根递推数列”.已知数列满足且点在二次函数的图像上. (1)试判断数列是否为算术平方根递推数列?若是,请说明你的理由;(2)记,求证:数列是等比数列,并求出通项公式;(3)从数列中依据某种顺序自左至右取出其中的项 ,把这些项重新组成一个新数列:.若数列是首项为,公比为的无穷等比数列,且数列各项的和为,求正整数的值.