从8名运动员中选4人参加4×100米接力赛,在下列条件下,各有多少种不同的排法?(用数字结尾)(1)甲、乙两人必须跑中间两棒;(2)若甲、乙两人只有一人被选且不能跑中间两棒;(3)若甲、乙两人都被选且必须跑相邻两棒.
已知数列是等差数列,数列是公比大于零的等比数列,且,. (1)求数列和的通项公式; (2)记,求数列的前n项和.
在中,内角A,B,C的对边分别为a,b,c,且. (1)求角B的值; (2)若,,求的面积.
已知函数. (1)求函数的最小正周期及单调递减区间; (2)求函数在上的最小值.
设已知函数,. (1)当时,求函数的最大值的表达式. (2)是否存在实数,使得有且仅有3个不等实根,且它们成等差数列,若存在,求出所有的值,若不存在,说明理由.
已知抛物线的方程为,点在抛物线上. (1)求抛物线的方程; (2)过点作直线交抛物线于不同于的两点,,若直线,分别交直线于,两点,求最小时直线的方程.