从8名运动员中选4人参加4×100米接力赛,在下列条件下,各有多少种不同的排法?(用数字结尾)(1)甲、乙两人必须跑中间两棒;(2)若甲、乙两人只有一人被选且不能跑中间两棒;(3)若甲、乙两人都被选且必须跑相邻两棒.
(本小题满分12分) 已知函数. (1)若函数在(,1)上单调递减,在(1,+∞)上单调递增,求实数a的值; (2)是否存在正整数a,使得在(,)上既不是单调递增函数也不是单调递减函数?若存在,试求出a的值,若不存在,请说明理由.
(本小题满分12分已知的内角、、的对边分别为、、,,且 (1)求角; (2)若向量与共线,求、的值.
(本小题满分12分) 已知,设= (1).求的最小正周期和单调递减区间; (2)设关于的方程=在有两个不相等的实数根,求的取值范围.
(10分) 测量河对岸的塔高时,可以选与塔底在同一水平面内的两个测点与.现测得,并在点测得塔顶的仰角为,求塔高。
设且. (I)当时,求实数的取值范围; (II)当时,求的最小值.