如图,已知直线与抛物线和圆都相切,是的焦点.(1)求与的值;(2)设是上的一动点,以为切点作抛物线的切线,直线交轴于点,以为邻边作平行四边形,证明:点在一条定直线上;(3)在(2)的条件下,记点所在的定直线为,直线与轴交点为,连接交抛物线于两点,求的面积的取值范围.
本小题满分12分)
已知斜三棱柱ABC—A1B1C1,在底面ABC上的射影恰为AC的中点D,又知
设 (1)求从A中任取一个元素是(1,2)的概率; (2)从A中任取一个元素,求的概率 (理)(3)设为随机变量, (2)设从A中任取一个元素,的事件为C,有 (4,6)(6,4)(5,5)(5,6)(6,5)(6,6)
(本小题满分10分)已知不等式的解集为A,不等式的解集为B,(1)求(2)若不等式的解集是,求的解集.
(本小题满分12分)某食品厂定期购买面粉,已知该厂每天需要面粉6吨,每吨面粉的价格为1800元,面粉的保管等其它费用为平均每吨每天3元,购面粉每次需支付运费900元.求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?
在椭圆上找一点,使这一点到直线的距离的最小值。