如图,已知直线与抛物线和圆都相切,是的焦点.(1)求与的值;(2)设是上的一动点,以为切点作抛物线的切线,直线交轴于点,以为邻边作平行四边形,证明:点在一条定直线上;(3)在(2)的条件下,记点所在的定直线为,直线与轴交点为,连接交抛物线于两点,求的面积的取值范围.
如图1,直角梯形中,,分别为边和上的点,且,.将四边形沿折起成如图2的位置,使. (1)求证:平面; (2)求平面与平面所成锐角的余弦值.
在中,角所对的边分别为,且. (1)求角的值;(2)若为锐角三角形,且,求的取值范围.
在等差数列中,,其前项和为,等比数列的各项均为正数,,公比为,且,. (1)求与;(2)设数列满足,求的前项和.
已知 (1)求的最小值及取最小值时的值。 (2)若,求的取值范围。
已知空间4个球,它们的半径分别为2, 2, 3, 3,每个球都与其他三个球外切,另有一个小球与这4个球都外切,则这个小球的半径为( )