.如图1,一架长4米的梯子AB斜靠在与地面OM垂直的墙壁ON上,梯子与地面的倾斜角α为.⑴求AO与BO的长;⑵若梯子顶端A沿NO下滑,同时底端B沿OM向右滑行.①如图2,设A点下滑到C点,B点向右滑行到D点,并且AC:BD=2:3,试计算梯子顶端A沿NO下滑多少米;②如图3,当A点下滑到A’点,B点向右滑行到B’点时,梯子AB的中点P也随之运动到P’点.若∠POP’= ,求AA’的长和点P运动的路线长。
(本小题满分8分)你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面时,面条的总长度y(m)是面条的粗细(横截面积)S(mm2)的反比例函数,其图象如图所示. (1)求出出y(m)与S(mm2)的函数关系式并写出自变量的取值范围; (2)求当面条粗1.6 mm2时,面条的总长度是多少米?
如图,在平面直角坐标系中,抛物线经过点A(3,0)、B(0,-3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t. (1)分别求出直线AB和这条抛物线的解析式. (2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积. (3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由
已知关于的方程, (1)当为何值时,此方程有实数根; (2)若此方程的两实数根,满足:,求的值
二次函数的图象如图所示,根据图象: (1)求其解析式 (2)观察图像写出>0时的取值范围 (3)是否存在某直线经过A(1,0)并与该抛物线只有一个公共点?若存在,求出该直线的解析式,若不存在,请说明理由
某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析, (1)每轮感染中平均一台电脑会感染几台电脑? (2)若该病毒得不到有效控制,第3轮感染后,被感染的电脑会不会超过700台?说明理由